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Intro: Transient Stability in Power Networks

Power Networks Synchroni

Ehe New ork Times

THE BLACKOUT OF 2003: Failure Reveals Creaky System, Experts Believe /152003

= Energy is one of the top three national priorities [B. Obama, '09]

7

= increasingly many transient disturbances to be detected and rejected

Expected additional synergetic effects in future “smart grid”:
= increasing complexity and renewable stochastic power sources

i

~ Transient Stabil Generators have to
“maintain synchronism in presence of large
transient disturbances such as faults or loss of
@ transmission lines and components,
@ generation or load.
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Intro: Transient Stability in Power Networks

“The vast North American power grid is the largest and most complex
machine engineered by humankind.” [P. Kundur '94, V. Vittal '03, ...]

Quick facts about the power grid:
@ large-scale, complex, and nonlinear
= various dynamic phenomena and instabilities
@ 100 years old and operating at its capacity limits
= increasing number of blackouts: New England '03, Italy '03, Brazil '09
Power Networks Synchronization Princeton MAE
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Intro: Transient Stability Analysis in Power Networks

Mathematical model of a power network:
3 X X ~~~-active node
® swing equation for generator i:

* passive node

= —Djfi + Pmi — Pei
o
5 . duce network
0(t) is measured w.r.t. a 60Hz rotating frame &[;e‘[:::[:e“z;es&
"=~ active node

_alltoall
admittance

Dérfler and Bullo (UCSB) Power Networks Synchronization Princeton MAE 4 / 31



Intro: Transient Stability Analysis in Power Networks

Mathematical model of a power network: -
) . ) ~~-active node
@ swing equation for generator i:

. ™ passive node
—0; = =D + Pmi — Pei
iy
. . reduce network
0(t) is measured w.r.t. a 60Hz rotating frame @m“”mvemd“@
@ network-preserving model leads to DAEs

o network-reduction model leads to ODEs with " active node

reduced admittance matrix Y; = | Y;| e/(3 i _alltoall

admittance

Pei = E?Gj + ZH; EiE; |Yjj|sin(6; — 6; + wj)

Classic model considered in transient stability analysis:

=—Dif; +w; — Z#‘, Pysin(0; — 0; + ¢;)

Intro: Transient Stability Analysis in Power Networks

Classic model considered in transient stability analysis:
—Di; + w;
7 =g

Transient stability and synchronization:

_Pysin(0; — 0; + ©j)

o frequency equilibrium: (6;,0;) = (0,0) for all i
@ synchronous equilibrium: 6; — 6; bounded & 6 — (9, =0 forall {i,j}
Classic problem setup in transient stability analysis:
@ power network in stable frequency equilibrium
@ — transient network disturbance and fault clearance
© stability analysis of a new frequency equilibrium in post-fault network
More general synchronization problem:

synchronization in presence of transient network disturbances
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Intro: Transient Stability Analysis in Power Networks

Classic model considered in transient stability analysis:

Db 4w — Z

Transient stability and synchronization:

_Pysin(6; — 6; + @)

synchronization in presence of transient network disturbances

Classic analysis methods: Hamiltonian arguments

M, : 7
—D;0; — V;U(0
= viU(0)

Energy function analysis, (extended) invariance principle, analysis of
reduced gradient flow [N. Kakimoto et al. 78, H.-D. Chiang et al. '94 ]
0; = -v,;u0)"

Key objective: compute domain of attraction via numerical methods
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Transient Stability Analysis in Power Networks

Classic model considered in transient stability analysis:

M;

= —Dib; + wj — Z Pysin(0; — 0; + ¢;)

Transient stability and synchronization:

synchronization in presence of transient network disturbances

Classic analysis methods: Hamiltonian arguments

—Dif; — VH;(0)T ;= —V,;U(0)T

=> Open problem [D. Hill and G. Chen '06]: power sys s network:

transient stability, performance, and robustness of a power network
?
«~ underlying network topology, parameters, and state
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Detour - Consensus Protocols & Kuramoto Oscillators

Consensus protocol in R™:

==, 2= %)

Detour - Consensus Protocols & Kuramoto Oscillators

Kuramoto model in T":

K .
wi — = zi#i sin(0; — ;)

n identical agents with state variable x; € R

graph with globally reachable node and weights a; > 0

objective is state agreement: x;(t) — x;(t) — 0

application: social networks, computer science, systems theory
robotic rendezvous, distributed computing, filtering and control ...

some references: [M. DeGroot '74, J. Tsitsiklis '84, ...]
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Detour - Consensus Protocols & Kuramoto Oscillators

Kuramoto model in T":

0;

o degrees of synchronization:
@ frequency entrainment
@ phase locking
© phase synchronization

@ known that

@ for large K, frequency entrainment & phase locking
@ additionally, for w; = wj;, phase synchronization
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o oscillators with phase 6; € T, frequency w; € R, complete coupling
o objective is synchronization: §;(t) — 6;(t) bounded, 6;(t) — 6;(t) — 0
o application: physics, biology, engineering

coupled neurons, Josephson junctions, motion coordination ...

o some references: [Y. Kuramoto '75, A. Winfree '80, ...]
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Intro: The Big Picture

~ Open problem in synchronization and
transient stability in power networks:
relation to underlying network state,
parameters, and topology

M; .
b= Db i Zm Pysin(f; — 0 + 0ij)

Consensus Protocols: Kuramoto Oscillators:
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: The Big Picture

~ Open problem in synchronization and
transient stability in power networks:
relation to underlying network state,
parameters, and topology

“Dibi+w =30
A

Consensus Protocols: ,\

Hay

Pysin(6; — 0, + ¢i;)

Kuramoto Oscillators:
TR VY

ELE=

L,,fzma,,(.,,ﬂ,} u,—%z/ﬁnn(ﬂ,fﬂ,)

Possible connection has often been hinted at in the literature!

L

Power systems: [D. Subbarao et al., ‘01, G. Filatrella et al.,
Networked control: [D. Hill et al., ‘06, M. Arcak, '07]
Dynamical systems: [H. Tanaka et al., '97]

Dirfier and Bulo(UCSB)

'08, V. Fioriti et al., '09]
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From the swing equations to the Kuramoto model
—Dif; 4w — ij Pysin(0; — 0; + ¢;;)

’,Zﬁl Pijsin(0i—0;+ij)

/o"‘\\
oo

-}

s

¢
L
\'\"

o o
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Outline

@ Introduction
@ synchronization and transient stability
@ power network model
© consensus and Kuramoto oscillators

2]
(to relate power network and Kuramoto model)
@ Synchronization analysis (of non-uniform Kuramoto model)
© Main synchronization result
@ Sufficient condition (based on weakest lossless coupling)

@ Sufficient condition (based on lossless algebraic connectivity)
O Further results

@ Conclusions
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Time-scale separation in power network model:

@ Motivation: harmonic oscillator
T

for e < 1 = two time-scales

@ Singular perturbation analysis:
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Singular Perturbation Analysis

Time-scale separation in power network model:

@ Motivation: harmonic oscillator
x

for e < 1 = two time-scales

o Singular perturbation analysis:

i3
full system < .
€z

initial error: > T "_‘r. approximation error
2(0) # h(z(0 )) " in slow time-scale: O(e)
error exp. stable in fast time-scale

flz,2) /\ = f(a, h(x))\ reduced (slow) system

)
=g(x,2)) €= ” \z=h(z) ) quasi-steady state
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Singular Perturbation Analysis
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0 A . Minax
Discussion of the assumption ¢ =f Do

sufficiently small:
physical interpretation: damping and sync on separate time-scales

classic assumption in literature on coupled oscillators: over-damped
mechanical pendula and Josephson junctions

physical reality: with generator internal control effects e € 0(0.1)
simulation studies show accurate approximation even for large €

non-uniform Kuramoto model corresponds to reduced gradient system
6; = —V,;U(8)7 used successfully in academia and industry since 1978
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Singular Perturbation Analysis

Time-scale separation in power network model:
@ power network model:

M;

= —Dib; + wi — Z Pysin(0; — 0; + ¢)

@ singular perturbation parameter: e :W,;:"D‘”_

@ reduced system for € = 0 is a non-uniform Kuramoto model:

Dif; = w; Z

_Pjjsin(0; — 0; + vij)

Tikhonov's Theorem:
Assume the non-uniform Kuramoto model synchronizes exponentially.
Then V (6(0), 6(0)) there exists € > 0 such that Ve < ¢* and V't >0

9i(f)power network — %(t)non-uniform Kuramoto model = O(€) -

Dérfler and Bullo_(UCSB)

Outline
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Q Introduction
@ synchronization and transient stability
@ power network model
(5] and Kuramoto oscillator

@ Singular perturbation analysis
(to relate power network and Kuramoto model)

@ Synchronization analysis (of non-uniform Kuramoto model)

@ Sufficient condition (based on weakest lossless coupling)
@ Sufficient condition (based on lossless algebraic connectivity)
O Further results

@ Conclusions
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Main Synchronization Result

Conditions on network parameters:

network connectivity > network’s non-uniformity + network's losses,
and gap determines domain of attraction
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Main Synchronization Result

Conditions on network parameters:

network connectivity > network's non-uniformity + network’s losses,

and gap determines domain of attraction

© Non-Uniform Kuramoto Model:
=> exponential synchronization: phase locking & frequency entrainment
= for j; = 0: explicit synchronization frequency & synchronization rates
= for j; = 0 & w; = wj: exponential phase synchronization

@ Power Network Model:

=> there exists € sufficiently small such that for all t > 0

gi(t)powev network — 0i(t)non-uniform Kuramoto model = O(€)-

= for e and network losses o;; sufficiently small, O(e) error converges
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Main Synchronization Result

Conditions on network parameters:
network connectivity > network’s non-uniformity + network’s losses,
and gap determines domain of attraction
© Non-Uniform Kuramoto Model:
=> exponential synchronization: phase locking & frequency entrainment
=> for pj; = 0: explicit synchronization frequency & synchronization rates

=> for ¢ = 0 & w; = wj: exponential phase synchronization
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Outline

Q Introduction
@ synchronization and transient stability
@ power network model
(5] and Kuramoto oscillator

@ Singular perturbation analysis
(to relate power network and Kuramoto model)

@ Synchronization analysis (of non-uniform Kuramoto model)
© Main synchronization result

@ Sufficient condition (based on lossless algebraic connectivity)
O Further results

@ Conclusions
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Synchronization of Non-Uniform Kuramoto Oscillators

Non-uniform Kuramoto Model in T":

Db = wj — Z#‘_ Py sin(0; — 0; + i)

Non-uniformity in network: D;, wj, Pjj, ¢j
Directed coupling between oscillator i and j:
P, P,

o coupling weights: 5 # 5"
2z )

o coupling functions: sin(f; — 6; + ¢;;) + sin(6; — 0; + ©;) # 0
Phase shift ;; induces lossless and lossy couling:
Pjsin(0; — 0;+ ©;;) = Pjj cos(ij) sin(6; — 0;) + P sin(p;;) cos(6; — 6;)
Synchronization analysis in multiple steps:
@ phase locking: 0;(t)
@ frequency entrainment: 5’,(:) -
© phase synchronization: 6;(t)

— 0;(t) becomes bounded
6(t) —0
6,(t) 0
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Synchronization of Non-Uniform Kuramoto Oscillators

Power Networks Synchronization

Classic (uniform) Kuramoto Model in T”:

- Y

_sin(0; — 0;)

Condition (1) for synchronization:

K > Wmax — Wmin

Gap determines the admissible initial lack of phase locking in a 7 interval.
Condition (1) strictly improves existing bounds on Kuramoto model:

[F. de Smet et al. '07, N. Chopra et al. '09, G. Schmidt et al. "09

A. Jadbabaie et al. ‘04, J.L. van Hemmen et al. '93].

Necessary condition for sync of n oscillators: K > ﬁ(umx — Wmin)
[J.L. van Hemmen et al. '93, A. Jadbabaie et al. '04, N. Chopra et al. '09]
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Synchronization of Non-Uniform Kuramoto Oscillators

Non-uniform Kuramoto Model in T" - rewritten:

) P
i —L cos(p;j) sin(6; — ;) +

(==L =
D; j#i Dj

P
—Lsin(ipj;) cos(6; — 6;)
D;

Condition (1) for synchronization:
Assume the graph induced by P = P is complete and
Lmin > Wi Wi
anax cos(Pmax) r(n’%(( - D,-) + maxz

worst non-uniformity ~ worst lossy COUP“"E

P
i Lsin(i)-

worst lossless coupling

Gap determines the admissible initial lack of phase locking in a 7 interval.

Dérfler and Bullo_(UCSB) Power Networks Synchronization Princeton MAE 19 / 31

Synchronization of Non-Uniform Kuramoto Oscillato

Theorem: Phase locking and frequency entrainment (1)

Non-uniform Kuramoto with complete P = PT
Assume minimal coupling larger than a critical value, i.e.,

Drmax 'j)
- ) + max 2
)i i j

: — Y _
Prmin > Peritical 1= e ) (r{rﬁ;(D, D

Define § = 5 — arccos (cos(Pmax) P;"“‘:i") and
A(6) := {0 € T"| maxg;y |0; — 6;] < 6}

Then
1) phase locking: the set A(d) is positively invariant
2) frequency entrainment: Y 0(0) € A(9) the frequencies 0; i(t)
synchronize exponentially to some frequency O € [ﬁmm(O) ﬁmax(O)]
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Synchronization of Non-Uniform Kuramoto Oscillators
Main proof ideas:
O Phase locking in A(d) < arc-length V(6(t)) is non-increasing
el V(0(8) = max{16:(6) 0,0 i € (1, n}}
D+ V(4(t)) é 0

~ contraction property from consensus literature:
[D. Bertsekas et al. '94, L. Moreau '04 & '05,

Z. Linetal '08,...]

in A(d) < c protocol in R”
bi==3", (06~ ).

where a;(t) = % cos(0;(t) — 0;(t) + ;) >0 forall t >0

@ Frequency entrail
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Synchronization of Non-Uniform Kuramoto Oscillators

Non-uniform Kuramoto Model in T” - rewritten:

q wj
fp==t
=D

5 % cos(ipjj) sin(6; — ;) + % sin(ijj) cos(0; — ;)

Condition (2) for synchronization:
Assume the graph induced by P = PT is connected with unweighted
Laplacian L and weighted Laplacian L(Pjjcos(i;)) and

Qa(L(Pj cos(y)) >
lossless connectivity
(H[,% - %’I”|2+ v/ Amax(L) H[, j%fsin(gauv b

lossy coupling

(D) (1/ cos(ipmax)) %
— N
non-uniform Djs necessary phase locking

)

non-uniformity

Outline

@ Introduction
@ synchronization and transient stability
@ power network model
© consensus and Kuramoto oscillators
@ Singular perturbation analysis
(to relate power network and Kuramoto model)

© Synchronization analysis (of non-uniform Kuramoto model)

© Main synchronization result
@ Sufficient condition (based on weakest lossless coupling)

o
O Further results
@ Conclusions
Princeton MAE 22 / 31

Dérfler and Bullo_(UCSB) Power Networks Synchronization

Synchronization of Non-Uniform Kuramoto Oscillato

Classic (uniform) Kuramoto Model in T":

Condition (2) for synchronization:
K>||[...,wi —wj,...]ll2

Gap determines the admissible initial lack of phase locking in a 7 interval.

Condition (2) corresponds to the bound in [N. Chopra et al. '09].

Gap determines the admissible initial lack of phase locking in a 7 interval.
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Synchronization of Non-Uniform Kuramoto Oscillators

Theorem: Phase locking and frequency entrainment (2)
Assume graph induced by P = PT is connected with unweighted Laplacian L,

incidence matrix H, and weighted Laplacian L(Pj cos(;))-
Assume algebraic connectivity is larger than a critical value, i.e.,

[IHD ]|, + VAwae D[, 5 2 sin(ea) -1l

cos(Pmar) (/M) ming 1y 1Dy ’

1 =
Z[T' = \/min;;{DiD;}/ max;4{DiD;}
3 Uk

X2(L(Pj cos(pij))) > Acritical

where &

Define ¢min € (0, 3) by sinc(m — ¢min) = (2/) Acriicat/ A2 (L(Pj cos()))-

1) phase locking: ¥ ||H8(0)|[, < (7 — ¢min), there is T > 0 such that
[IHO(t)ll, < % — pmax forail t > T

2) frequency entrainment: V [|HO(0)||, < ju(m — dmin) the frequencies 6;(t)

synchronize exponentially to some frequency O € [Brmin(0), Imax(0)]
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Outline

Power Networks Synchronization Princeton MAE 24 / 31

@ Introduction
@ synchronization and transient stability
@ power network model
@ consensus and Kuramoto oscillators
@ Singular perturbation analysis
(to relate power network and Kuramoto model)

© Synchronization analysis (of non-uniform Kuramoto model)
© Main synchronization result
@ Sufficient condition (based on weakest lossless coupling)
© Sufficient condition (based on lossless algebraic connectivity)
o

@ Conclusions

Dérfler and Bullo (UCSB) Princeton MAE 26 / 31

Synchronization of Non-Uniform Kuramoto Oscillators
Main proof ideas:

@ Phase locking in A(6) via ultimate boundedness arguments

[[HOQ)]| < p(m —¢) 6(t) YWo(e) <0
W) =0
W) >0

[[HO(T)|| < =/2
—Pmax

=0 t=

‘ 2

1
== 19, —0;
) 2 Z{r\/} D(ijy ! !

@ Frequency entrainment for t > T <« consensus protocol in R”

i--%,

where a;(t) = %cos(é’,(t)

Lai(0)(0; —6)),
0;(t) +

Power Networks Synchronization Pris

)>0forallt > T
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Synchronization of Non-Uniform Kuramoto Oscillators

Theorem: A refined result on frequency entrainment
Assume graph induced by P has globally reachable node and there exists
4 € (0, %) such that the phases are locked in the set A()

IfP=PT & p;=0forallije{l n}, then V 0(0) € A(6) the
frequencies 0',v(t) synchronize exp. to the weighted mean frequency

ZiDi 2, D

and the exponential synchronization rate is no worse than

Q.=

Ae = — Na(L(Py)) wcos(A(Dl,l))z/ e"/‘%

connectivity A(9) 1/01 slowest
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Synchronization of Non-Uniform Kuramoto Oscillators

Theorem: A result on phase synchronization
Assume the graph induced by P has a globally reachable node, and y;; = 0
and B{:%jfor allije {1 n}. Let ¢ € (0,7].
For the non-uniform Kuramoto model,
1) V6(0) € {6 € T": maxy;jy |0; — 6| <™ — ¢} the phases 6;(t)
synchronize exponentially; and
2) if P=PT, V |HO(0)|, < pu(m — ¢) the phases 0;(t) synchronize
exponentially at a rate no worse than
Aps = — (k/n) ming; 3 {Dxi jy } sinc(m — ¢)  Aa(L(Py))

weigting of D; 0(0) connectivity

Result can be reduced to [A. Jadbabaie et al. '04].
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Simulation Studies

Simulation data:
o initial phases mostly clustered besides red phasor
@ € = 0.6s is large
@ non-uniform network
= sufficient conditions for synchronization are satisfied

Result: singular perturbation analysis is accurate v
both models synchronize
fler and Bullo (UCSB)
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Simulation Studies
[ -}
[ ]

/
L
Nl

—e—o
Simulation data:
@ worst-case initial phase-differences: 6;(0) in splay state
@ €=0.12s is small
@ strongly non-uniform network
= sufficient conditions for synchronization are not satisfied

Result: singular perturbation analysis is accurate v
both models synchronize
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Summary:

7 Open problem in synchronization and
transient stability in power networks:
relation to underlying network state,

parameters, andpatGGy (not today)

[Singular Perturbation|
Approximation

niform
Kuramoto Oscillators
=
> N /‘ |
/5 [ uramoto, Consensus, N ﬁ “
and Nonlinear Control Tools| ~ ~&d-
Future Work:

o relation to network topology, clustering and scalability

Time-varying
Consensus Protocols:

@ synchronization in optimal power flow problems
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